Learning Word Relatedness over Time

نویسندگان

  • Guy D. Rosin
  • Eytan Adar
  • Kira Radinsky
چکیده

Search systems are often focused on providing relevant results for the “now”, assuming both corpora and user needs that focus on the present. However, many corpora today reflect significant longitudinal collections ranging from 20 years of the Web to hundreds of years of digitized newspapers and books. Understanding the temporal intent of the user and retrieving the most relevant historical content has become a significant challenge. Common search features, such as query expansion, leverage the relationship between terms but cannot function well across all times when relationships vary temporally. In this work, we introduce a temporal relationship model that is extracted from longitudinal data collections. The model supports the task of identifying, given two words, when they relate to each other. We present an algorithmic framework for this task and show its application for the task of query expansion, achieving high gain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Modeling Sense Relatedness in Multi-prototype Word Embedding

To enhance the expression ability of distributional word representation learning model, many researchers tend to induce word senses through clustering, and learn multiple embedding vectors for each word, namely multi-prototype word embedding model. However, most related work ignores the relatedness among word senses which actually plays an important role. In this paper, we propose a novel appro...

متن کامل

TrWP: Text Relatedness using Word and Phrase Relatedness

Text is composed of words and phrases. In bag-of-word model, phrases in texts are split into words. This may discard the inner semantics of phrases which in turn may give inconsistent relatedness score between two texts. TrWP , the unsupervised text relatedness approach combines both word and phrase relatedness. The word relatedness is computed using an existing unsupervised co-occurrence based...

متن کامل

Specializing Word Embeddings for Similarity or Relatedness

We demonstrate the advantage of specializing semantic word embeddings for either similarity or relatedness. We compare two variants of retrofitting and a joint-learning approach, and find that all three yield specialized semantic spaces that capture human intuitions regarding similarity and relatedness better than unspecialized spaces. We also show that using specialized spaces in NLP tasks and...

متن کامل

Improved Answer Selection with Pre-Trained Word Embeddings

Œis paper evaluates existing and newly proposed answer selection methods based on pre-trained word embeddings. Word embeddings are highly effective in various natural language processing tasks and their integration into traditional information retrieval (IR) systems allows for the capture of semantic relatedness between questions and answers. Empirical results on three publicly available data s...

متن کامل

Combining Word Embedding and Lexical Database for Semantic Relatedness Measurement

While many traditional studies on semantic relatedness utilize the lexical databases, such as WordNet or Wikitionary, the recent word embedding learning approaches demonstrate their abilities to capture syntactic and semantic information, and outperform the lexicon-based methods. However, word senses are not disambiguated in the training phase of both Word2Vec and GloVe, two famous word embeddi...

متن کامل

The effectiveness of learning strategies training in the mathematics’ word problem-solving performance among mentally retarded elementary school students

Objective: The present research aimed to investigate the effectiveness of learning strategies training in the mathematics’ word problem-solving performance among mentally-retarded elementary school students. Method: The research population included all the mentally retarded female students studying in the sixth grade of elementary schools located in Tehran in the school year of 2016, out of whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017